Synthesis of Spongy-Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced Dissolution of Ibuprofen Loaded via Supercritical CO2

نویسندگان

  • Abdul-Rauf Ibrahim
  • Xiangyun Li
  • Yulan Zhou
  • Yan Huang
  • Wenwen Chen
  • Hongtao Wang
  • Jun Li
چکیده

The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g) and surface area (284.1 m2/g) was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions) leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug) loading (1.38 g/g HAp), enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile Synthesis and Characterization of Ibuprofen-mesoporous Hydroxyapatite Nanohybrid as a Sustained Drug Delivery System

The present study deals with the fabrication of ibuprofen-mesoporous hydroxyapatite (IBU-MHA) particles via the incorporation of ibuprofen (IBU)—as a nonsteroidal anti-inflammatory drug—into mesoporous hydroxyapatite nanoparticles (MHANPs) using an impregnation process, as a novel drug delivery device. MHANPs were synthesized by a self-assembly process using cetyltrimethylammonium bromide (CTAB...

متن کامل

Facile Synthesis and Characterization of Ibuprofen-mesoporous Hydroxyapatite Nanohybrid as a Sustained Drug Delivery System

The present study deals with the fabrication of ibuprofen-mesoporous hydroxyapatite (IBU-MHA) particles via the incorporation of ibuprofen (IBU)—as a nonsteroidal anti-inflammatory drug—into mesoporous hydroxyapatite nanoparticles (MHANPs) using an impregnation process, as a novel drug delivery device. MHANPs were synthesized by a self-assembly process using cetyltrimethylammonium bromide (CTAB...

متن کامل

Surfactant Removal from Mesoporous ‎Silica Shell of Core-Shell Magnetic ‎Microspheres by Modified Supercritical ‎CO2‎

   In this paper, a kind of core–shell magnetic mesoporous microspheres of Fe3O4@SiO2@meso-SiO2 with high surface areawas prepared, where magnetic Fe3O4 nanospheres were used as the inner core, tetraethyl orthosilicate (TEOS) as silica source, and cetyltrimethylamonium bromide (CTAB) as pore forming agent. Methanol-enhanced s...

متن کامل

Evaluation of Ibuprofen Release from Gelatin /Hydroxyapatite /Polylactic Acid Nanocomposites

Gelatin-hydroxyapatite-polylactic acid (PLA) nanocomposites were synthesized using five different formulations. The nanocomposites were loaded with ibuprofen and the amount of drug in the carriers was determined. X-ray diffraction (XRD) analysis was conducted before and after drug loading to ensure the presence of ibuprofen on the nanocomposites. Drug delivery was evaluated in phosphate buffere...

متن کامل

Drug Nano-Particles Formation by Supercritical Rapid Expansion Method; Operational Condition Effects Investigation

Dissolution pressure and nozzle temperature effects on particle size and distribution were investigated for RESS (Rapid Expansion of Supercritical Solution) process. Supercritical CO2 was used as solvent and Ibuprofen was applied as the model component in all runs. The resulting Ibuprofen nano-particles (about 50 nm in optimized runs) were analyzed by SEM and laser diffraction pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015